
average radius as the particle size. Such an estimate will obviously be the more precise, 

the narrower the range of particle sizes. 

The authors thank V. N. Shtern, V. I. Bukatyi, A. M. Shaiduk, and A. A. Tel'nikhin for 
useful discussions. 
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PERTURBATION PROPAGATION IN NONLINEAR TRANSPORT PROCESSES 

DESCRIBED BY A TURBULENT FILTRATION EQUATION 

K. B. Pavlov, A. S. Romanov, 
and I. A. Fedotov 

UDC 532.516 

A parabolic quasilinear equation of the form 

Oft c~ (] ~uh In--10tt~ O, f r  k n > t  (1) 
at az \! T oz ] ---- 

describes different transport processes in the case of a power-law dependence of the transport 
coefficients on the transportable quantity u and its gradient ~u/~x. In particular, for n = i 
Eq. (i) can be considered as a nonlinear heat conduction equation, for k = i as the momentum 
transport in a non-Newtonian dilatant fluid, and in the general case of k, n # i, as a turbu- 
lent filtration equation [1-3]. The essential feature of the transport processes described 
by (i) is the presence of the line x = xf(t) delimiting the domain with u(x, t) = 0 and the 
domain of localization of perturbations with u(x, t) > 0 [4]. Regularities of the motion of 
the front x = xf(t) in the Cauchy problem for (I) are investigated in this paper. 

We shall consider an initial distribution of the transportable quantity described by the 
bounded finite function 

0 for I x l < l x ~ l ,  
~~ for ixl>Ix, I, 

that is symmetric with respect to x to be given at the initial time t = 0, and assume that the 
asymptotic representation of the function uo(x) as x + xr + 0, xr < 0 has the form 

Uo(X) N U o ( x - -  xr ~, ~ ~ 0 .  (2) 

Then t h e  law of  f r o n t  mot ion  xf  = x f ( t )  shou ld  be found from t h e  s o l u t i o n  of  t he  Cauchy 

Moscow. T r a n s l a t e d  from Zhurna l  P r i k l a d n o i  Mekhaniki  i T e k h n i c h e s k o i  F i z i k i ,  No. 4, pp.  
83-88,  J u l y - A u g u s t ,  1981. O r i g i n a l  a r t i c l e  s u b m i t t e d  March 11, 1980. 
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problem 

Ou 0 , aul,~ In 
l--~yx " ] = O, O > x > x f  (t  ), t > O ,  ot Ox (3)  

u (x, O) = uo (x), 

where it is necessary to consider xf(0) = x~. It follows the condition of continuity of the 
desired solution u(x, t) and of its derivatives (3uk/3x) n on the front x = xf(t) that 

ouh ]n 
u |x  I (t), t] = \-bT-x ] [xf (t), t] = O. ( 4 )  

Differentiating the first of the conditions (4) along the line x = xf(t), we obtain the 
expression 

dx] __ l i m  Ou (Ou] -1 
XI ----- dt x-~xf+o "-~ ~ Ox ] ' 

which can, by taking account of (3), be converted to the form 

o [( 
x l = -  l im -~z [ \  Ox ] J k O x ]  " x~x]+O 

(5) 

from which the asymptotic representation for the transportable quantity follows 

u(x, t )-- , t --7-f-- j  (-x3~"-~(x-xl) ~-~, x~x~+O. (6) 

Equations (5) and (6) do not hold if ~f ~ 0. 

Now, let us determine motion of the front as t § +0. We shall start from the natural 
condition of the continuous passage of the solution u = u(x, t) in the initial condition 
u(x, 0) = uo(x) as t § 4-0 

u(x, t) ~ Uo(x -- xr t - ~  §  x - +  xr + O. (7) 

Taking into account that (x -- xf) w ~ (x -- x@) w as t § 4-0, x § x@ +0 and xf -- x@ = 
t 

I x/dr, we obtain the following relationship from (6) and (7): 
0 

(__x])~n i --~ x l d t j  NU oLl~p-F__i j , t - + - - O ,  x - - - ~ x r  

We shall seek the function if = if(t) in the form 

xi  _~ - - A t o  < 0, (8) 
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f(  k~ l%~- lr ,k , -~  1/~ t h e n  A = [ik--h--~--i } V '-/o j , ~ = - 1  + 1/~,[3 = t + n + 0 )  - -  knr 

The dependence of the exponent o = o(~) is shown in Fig. I. For 0 < ~ < n/(kn -- i) the 
velocity of front motion is if § -~ as t § +0, but the transportable quantity remains 
localized since Ixf -- x~l < ~, because o > --i, 0 < A < ~. If m = n/(kn -- l),§ x#(0. = 
[kn/(kn -- l)]nu~ n-i. If n/(kn -- i) < ~ < (n + l)/(kn -- i), then ~f § 0 as t +0. 

It is interesting to consider the passage to the limit as ~ + (n + l)/(kn -- I). In this 
case the derivatives are dJxf/dtJ(0) = 0 to j = [o] § ~, hence in the limit it is necessary 
to consider xf ~ 0 as t + +0, and as noted, the expressions (5) and (6) become illegitimate. 

Let us seek the asymptotic representation of the function u = u(x, t) as x + xf + 0 
directly in the form 

u(x ,  t) N a( t ) (x  - -  xr a(t)  > O. (9) 

We then obtain from (3) 

d a  ~ aknn (ka)n (k~z - -  1)(x  - -  xr n (au-1) - l - a ,  x - +  xr -}- O, 
dt 

from which we determine 

n q - I  [( k n - - I  I n 
a - - - - ' k n _ t  , a----L\kn._}_k l 

1 ]~/(hn-x) 
n ( k - j - 1 ) ( T - - t ) '  

The constant of integration T is evaluated from the initial condition (3) 

fzl-kn( kn - -  1 ~n 1 
T = ~o \ k-i-$T7 n (k + I)" 

The asymptotic representation obtained for the solution 

n + l  

u ( x ,  t )  ,'~ a ( t )  (x  - -  x r  k n - x  , x --+ x ,  + 0 ( i0)  

is valid only in the finite time 0 < t < T and is called metastable (see [5, 6], for in- 
stance). 

Let us consider the auxiliary Cauchy problem that differs from (3) by the domain of 

definition ~ > x > xf(t), t > 0. The function 

I(kl ~ __ t tn (x__ x~)rt+l }l/(kn-- I), 
u* (x,  t) = L~k-y-~-~- ~ n ( ~ T ~ 7 ( - V - -  O 

o o >  x >  x~, t < T* = const < 0o 
(ii) 

is a solution of the auxiliary problem with the appropriate initial condition containing the 

constant T*. 

Because of the monotonic dependence of the solution of the Cauchy problem for (1) on 
the initial condition, the function (ii) majorizes any solution of the symmetric problem (3) 
[4] for a valid selection of the constant T* for any m>~(n + l)/(kn-- i). Therefore, for T*. 
~(n + l)/(kn-- i), a mode xf ~ x~ holds during at least the finite time segment O~t~ 

To confirm the asymptotic relationship (8) obtained, the transport process described by 
(i) was computed numerically for k = i, n = 2 with the initial condition 

{( i - l x l ) %  I x l ~ < t ,  
u ( x , 0 )  = 0, I x l ~ > t .  

The Cauchy problem formulated was supplemented by the boundary conditions u(l, t) = O, 
I~[ = 2, in the computations, as is possible if ]xf(t) l < 2. After quasilinearization near 
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the solution, the differential expression (i) was approximated by an implicit difference 
scheme of second order accuracy. The computations were performed by the factorization method. 
The location of the front Ixi = ixf(t) i was determined approximately by the condition u(xf, t) = 
lO-bu(0, t). Sufficient accuracy is obtained if the spacing Ax = 0.02, At = lO-a/3 is se- 
lected in x and t, respectively. 

Certain results of comparing the theoretical and numerical dependences are presented in 
Fig. 2, where motion of the localization domain front Ixfl -- Ix~I with time is shown. Curves 
1 and 2 are computed by means of (8) and correspond to values of the exponent m = 1.5; 2.0. 
The front location obtained numerically is indicated by the dots. For ~ 3  metastable 
localization of the solution is set theoretically. For numerical computations the front 
remains fixed throughout the whole computation time to t = 20At in this case. The compu- 
tations performed in the range of variation 0~<m < 3 of the exponent confirmed the relation- 
ship (8) completely. 

As an application, let us use the theory developed to analyze the problem of a submerged 
turbulent jet of incompressible fluid of finite width (Fig. 3). The turbulent momentum 
transport is described in the boundary-layer theory approximation by the system of equations 

o,. v j  , 

~uz  i , ~3vz ~ .2 I Ou l Su  ~y ~--7C =0, T = ? t ~ l ~ l ~ ,  (12) 

where i = 0.1 corresponds to plane and cylindrical symmetry of the problem, O is the fluid 
density, m is the turbulent friction stress determined by Prandtl [7, 8], and l T is the turbu- 
lent mixing length. In the case of the submerged jet under consideration /T = cy [7, 8], where 
c is an empirical constant of the theory. 

In the plane section of the nozzle y = 0 (Fig. 3), the fluid velocity equals 

I >0 for 

u (0 ,  z) = u o (z) t =  0 for 

where the asymptotic representation for Uo(Z) as Iz 
given in the form 

z l<l~ , ! ,  
zl >]z,I ,  (13) 

I z r  -- 0, zr < 0 will be considered 

Uo(Z ) ..~ W(tz~o I - -  Izi)V, Izl ~ [zr - -  O, W = c o n s t  ~> O, ~? = c o n s t  ~.~ O. (14) 

A feature of a turbulent submerged jet in this formulation is its finite width. In 
other words, in any jet section y = yo there exists the jet boundary z = zf(yo), zf(0) = z~ 
such that u(yo, Izl <bs(g0)i)~ 0 and u(y0, IzI~ Iz/(yo)l) = O. Physically obvious conditions of no 
velocity u(y, • = 0 and no turbulent friction stress ~u/~z(y, i zf) = 0 are satisfied on 
the jet boundary. 

If we go over to new independent variables that are a generalization of the Mises vari- 
ables [8] y, z + t, x, where 
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I o o : l )  "dx dt =- Wc-y" (i w- u dg, dx = uz~dz, (15) 

then the initial problem (12)-(14) in the domain 0 > x > xf will reduce to the Cauchy problem 

3i 

Ot --c)z iL ~fu ~o a u /  j I~'Tx-~/' x/=- x(y,z/); (16) 

~(0, x) = Uo(Z) ~ Uo(x - x,)~, x ~ xr ,'-- O, xr = x(O, zr 

u(t ,  xj)  = O. 

Here  ~:o = W [(Wz~) -1 (i ~' ?)] l+v ; co = ~F.'(i ~- ~). 

It follows from the condition of boundedness of the initial velocity distribution 0 
y < ~ that 0 ~m < i. 

Limiting ourselves to the domain of the jet near the boundary x § xf + 0, we have 

xf x0 

hence, (16) is reduced to the form 

(17) 

( 1 8 )  

Ot O=[\Oxl J' x - - + x 1 ( t ) w O '  (19) 

together with conditions (17) and (18), with the problem (3) for k = n = 2. which agrees, 

The reverse passage to the physical variables y, 
relationships (15). 

Summarizing, the expressions 

z is accomplished by starting from the 

zt ~ zr + 61/3• - -  ~ ) y ,  y - +  + 0 ,  • = 2c 2 ( 2 0 )  

for a plane jet (i -- 0) and 

21/~ r z~ /2  03)l/3tl/3]1/2, z t ' "  L,O + 1 2  2 / 3 ( t -  t - + +  0 (21) 

for a cylindrical jet (i = i) are obtained for the jet boundary in conformity with the theory 
developed. Here t = t(y) is evaluated from the relation 

[z~/2 + t2 ~/3 (t - -  ~)l/3tl/z]-a/2dt = 23/~c2dg3/12. 

Hence, if the inequality y >>z~ is satisfied, then (21) is approximated by the relationship 

Zf  N 31/32(1 - -  (0)l/3xy, y --~ - } -  0 (i = i) .  (22) 

Presented in Fig~ 4 is a comparison between the theoretical dependences obtained for the 
jet boundary zf = zf(y) and experimental results [9, i0] in dimensionless coordinates ~ ~ zf/z~ 
and ~ = y/~. Curves 1 and 2 have been constructed by means of (20) and (21). Here we set 

= 0, • = 0.i and 0.077 for i = 0 and i, respectively [7]. The crosses depict the experi- 
mental results for a plane turbulent jet (i = 0) [9], and the dots are for a cylindrical jet 
(i = i) [i0]~ The dashed line has been constructed by means of the approximate dependence 
( 2 2 ) .  
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Agreement between the theoretical dependences obtained, the results of numerical compu- 
tations, and the experimental data indicates the effectiveness of the asymptotic method 
developed. 

The authors are grateful to K. A. Volosov for aid in performing the numerical computations. 
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SPECTRAL STRUCTURE OF TURBULENT CONVECTION 

I. V. Nikitina and A. G. Sazontov UDC 532.5 

A central problem in the theory of evolution of strong turbulence is, as is well known, 
the determination of the spectrum of turbulence. Contemporary ideas on scale-invariant 
spectra are based on Kolmogorov's ideas, introducing the hypothesis of the self-similar nature 
of the spectrum in an inertial interval and the locality of turbulence [i]. For a long time 
similarity methods were essentially the only means of theoretical analysis for determining 
the spectral structure. However, due to the intermittent nature of turbulence dimensionality 
arguments often do not finally permit finding the form of the spectrum [2], therefore there 
have recently been numerous attempts at solving the problem of the Kolmogorov spectrum by 
starting directly from the equations of hydrodynamics, 

The increasing interest in self-similar spectra is obviously related to two circum- 
stances. First, the theory of scale-invariant spectra in phase transition problems has been 
substantially developed lately. Thus, the renormalized-group approach and consideration of 
problems in arbitrary dimensiona!ity have been powerful means of studying critical effects 
[3, 4]; these ideas have by now been successfully transferred to strong turbulence [5, 6]. 
Secondly, the method of conformal mappings [7, 8], first suggested in [9] (see also the 
review [i0]) for finding exact power-law solutions in the theory of weak turbulence, is quite 
fruitful in solving problems of the Ko!mogorov spectrum. 

So far all results on the spectra of strong turbulence referred to the case of an iso- 
tropic medium.* In reality the effect of anisotropy, related, for example, to the action of 
gravity forces, is important. In the present paper we solve the problem of finding anisotropic 
spectra of turbulent convection (the exceptional direction is the vertical). 

The effect of convection plays a large role in many physical processes. For example, 
convective effects underlie a whole variety of solar phenomena [12]; convection is one of the 

*Within weak turbulence anisotropic spectra were discussed in [ii]. 

Gor'kii. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
88-97, July-August, 1981. Original article submitted May 5, 1980. 
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